
ingenieure.

3DEXPERIENCE Conference 2019

Efficient modeling and evaluation method of bolt connections based on VDI 2230 guideline.

Motivation and Typical Problems of a bolt assessment

introduction strategy abaqus setup assessment bolt assessment detailed assessment additional features

- Bolts are one of the most used conneciton types between components.
- Bolts have to resist loads in service (proof of strength needed, VDI 2230 widely used standard)
- Reduce modeling effort as much as possible
- Assemblies may include many (different) bolts and load cases, proof of strenght can be very time consuming
- Proof of strength for the bolts must be furnished identically for all engineers in the company and for every project (reliability)
- If proof of strength cannot be furnished, the engineer needs to understand fast why are the bolts failing / which load causes failure

AND

answer the question very fast, which modifications are required to fix the problem

Motivation and Typical Problems of a bolt assessment

introduction

strategy

abagus

setup assessment

bolt assessment

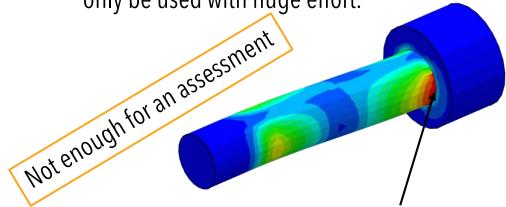
detailed assessment

additional features

A standard-compliant assessment of bolted connections is often in contradiction with the tools that the CAE programs supply.

VDI 2230

R0 – R13



By using the FEM, 4 steps are needed

- R8: working stress
- R9: alternating stress
- R10: surface pressure
- R12: slipping, shearing

FEM

- Only the pretension node forces can be queried easily.
- The maximum stress occurs at a singularity.
- For a proof of bolts, the resulting stress can only be used with huge effort.

Singular with simplified bolts

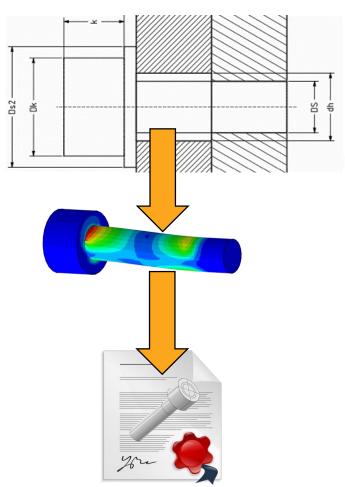
Our strategy

introduction

strategy

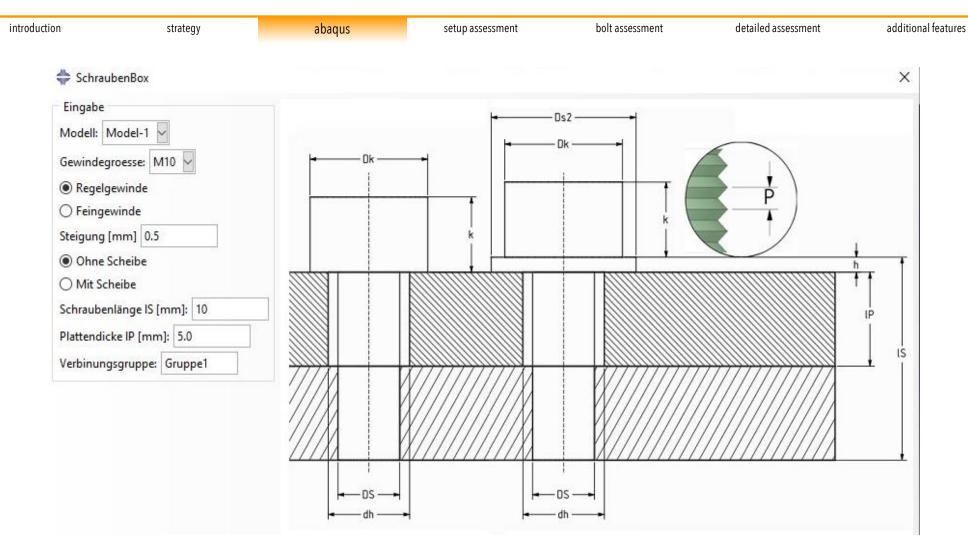
abaqus

setup assessment


bolt assessment

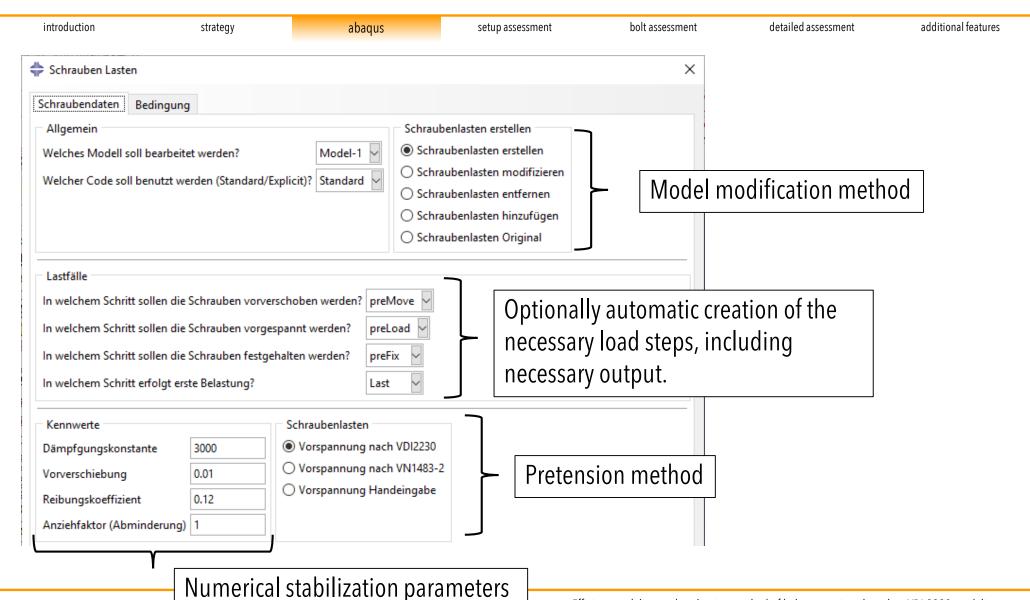
detailed assessment

additional features


The goal must be to furnish the bolt assessment in less than 10 active minutes effort.

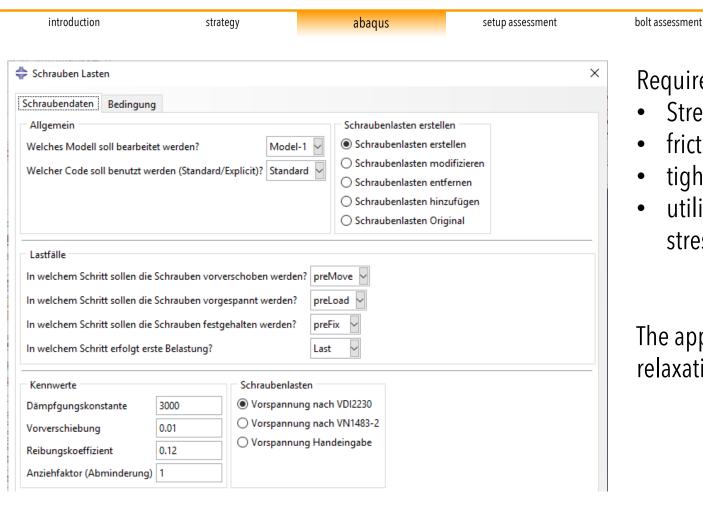
- 1. parametric bolt models
- 2. <u>automatic</u> definition of the pretension forces
- 3. <u>automatic</u> definition of the necessary output variables
- 4. <u>automatic</u> extraction of the cutting forces and moments
- 5. <u>automatic</u> extraction of the inner surface shear forces
- 6. easy VDI2230 assessment setup
- 7. easy forecast studies
- 8. real-time documentation!

Bolt modeling (screen record in real time)



For animation, please visit https://di-gmbh.com/single_bolt.mp4

load and output modeling

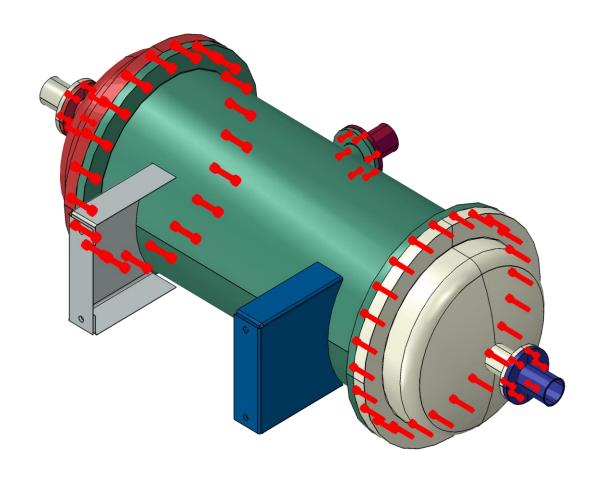


load and output modeling

additional features

Required Parameter for each Bolt group:

detailed assessment


- Strength grade
- friction coefficient
- tightening factor
- utilization factor of the yield point stress

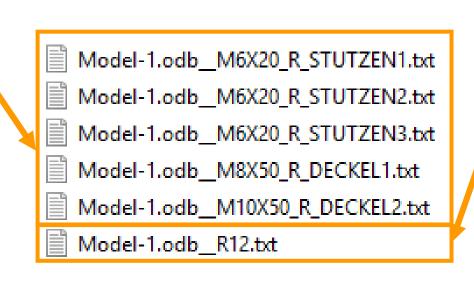
The application of a preload losses due to relaxation is easily possible.

Example: load definition for 62 bolts in less than 1,2 min (screen record in real time)

introduction strategy abaqus setup assessment bolt assessment detailed assessment additional features

For animation, please visit https://di-gmbh.com/assembly.mp4

Postprocessing in abaqus

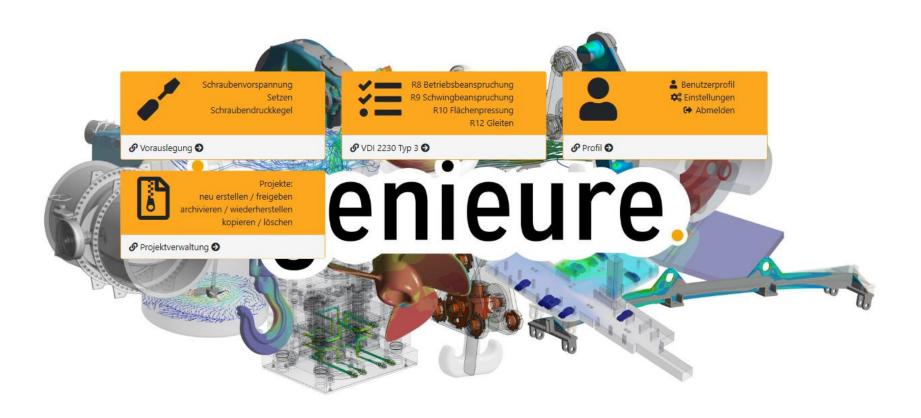

introduction strategy abaqus setup assessment bolt assessment detailed assessment additional features

Extract the bolt forces:

- 1. Open Result file
- 2. Click on "bolt assessment"
- 3. Get a text- file for each bolt group
- 4. Fast: less than 5 minutes for > 60 bolts and 16 load cases

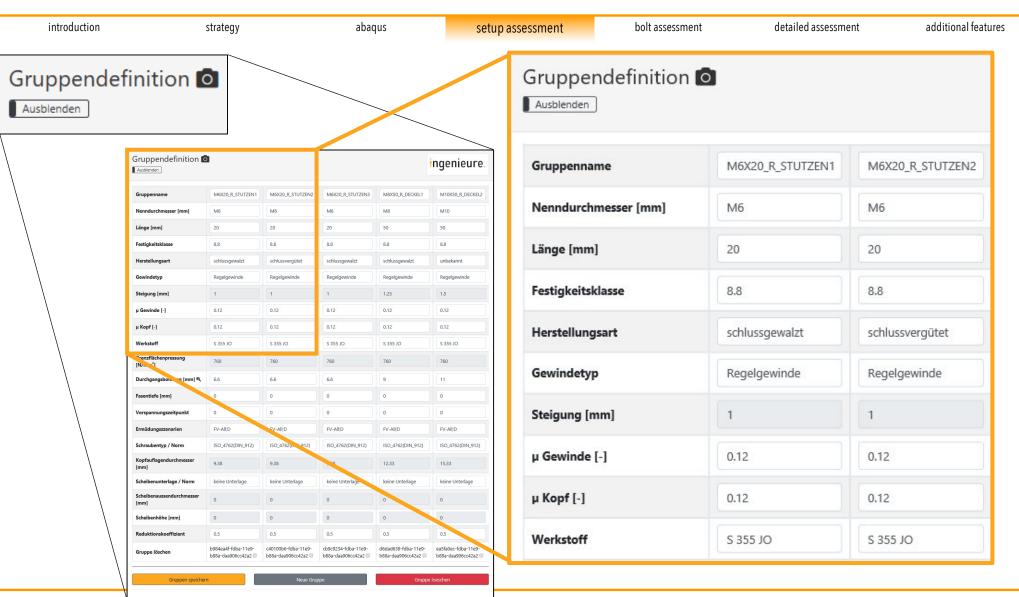
Extract the inner surface shear forces:

- 1. Open Result file
- 2. Click on "R12 Contact assessment"
- 3. Get one text-file
- 4. This maybe takes some time (depending on amount of contact pairs and load cases)



Both tasks are automatically done with our macros

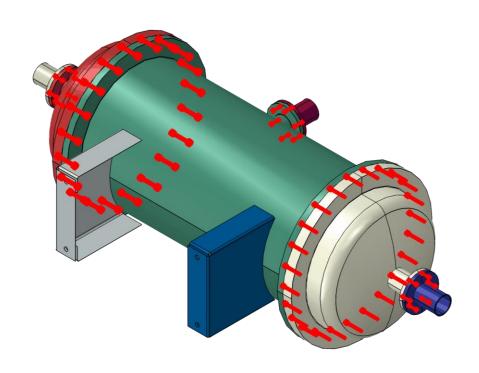
Start with our Bolt Tool


introduction strategy abaqus setup assessment bolt assessment detailed assessment additional features

ingenieure.


Group definition

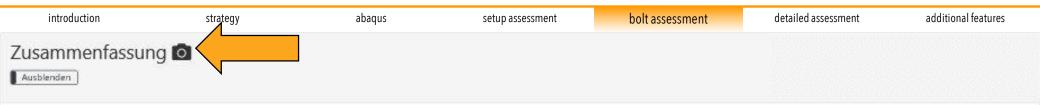
Little helpers: Mouse hover and popups



Bolt evaluation

introduction strategy abaqus setup assessment bolt assessment detailed assessment additional features

- 62 bolts
- 16 load cases
- 2 section cuts per bolt
- 3 forces and 3 moments per section cut
- \rightarrow 62 x 16 x 2 x 6 = 11904 values
- Evaluation of all load case scenarios
- → Cumbersome and risky for possible errors


Realtime documentation with screenshot function

introduction bolt assessment detailed assessment additional features abagus strategy setup assessment Zusammenfassung ingenieure R8 - Betriebsbeanspruchung (Statischer Nachweis) FSA Mss Schraube INI [Nmm] [MPa] [MPa] [-] M10X50 R DECKEL2-1-RAD-2 KOPF IOS M10X50 R DECKEL2 640 M6X20_R_STUTZEN1-1_KOPF_IOS 6 -29782.2 931990 19307 -212 74677 M6X20 R STUTZEN2-1-RAD-6 GEWINDE IOS 626134 -212 50940 640 640 M8X50_R_DECKEL1-2-RAD-3_KOPF_IOS M8X50_R_DECKEL1 245828 -208 8516 640 R9 - Schwingbe V:1.01 Schraube [MPa] [MPa] M10X50 R D 37084.8 59.5 Zusammenfassung 🗿 M6X20_R_STI 59.5 M6X20_R_STU 59.5 26700.8 54.2 M8X50 3959.9 Ausblenden R10 - Flächenpre V:1.01 Schraube 899.5 1300 1.45 1300 M6X20_R_STUTZEN3-1_GEWINDE_IOS M8X50_R_DECKEL1-2-RAD-3_GEWINDE_IOS M8X50_R_DECKEL1 GEWINDE 23628.8 55.8 4235 R12 - Gleiten V:1.00 Show 50 entries Search: FAx [N] μ[-] S Index [-] RW [mm] FQ [N] 474535 55892.9 0.12 0.136235 BEHAELTER-1.DI_R12_DECKEL_1 BEHAELTER-1.DI_R12_DECKEL_2 0.0490791 BEHAELTER-1.DI_R12_STUTZEN_1 115326 0.12 1.00254 DECKEL_1-1.DI_R12_STUZEN_2 0.12 11 136/83 16377.9 1.13136 DECKEL_2-1.DI__R12_STUZEN_3 16621.8 0.12 0.981435 15 138515 Gleitebene S Index [-] RW [mm] Showing 1 to 5 of 5 entries Previous 1 Next

R8 | R9 - Assessment

R8 - Betriebsbeanspruchung (Statischer Nachweis)

V:1.01

Schraube	Gruppe	Position	Zeit	F _{SA} [N]	M _{SB} [Nmm]	M _{Torsion} [Nmm]	σ _z [MPa]	σ _B [MPa]	τ [MPa]	σ _{Red} [MPa]	R _{p0.2} [MPa]	S _F [-]
M10X50_R_DECKEL2-1-RAD-2_KOPF_IOS	M10X50_R_DECKEL2	KOPF	6	-39308	440842	2338	678	7078	-205	7758	640	0.08
M6X20_R_STUTZEN1-1_KOPF_IOS	M6X20_R_STUTZEN1	KOPF	6	-29782.2	931990	19307	1480	73197	-212	74677	640	0.01
M6X20_R_STUTZEN2-1-RAD-6_GEWINDE_IOS	M6X20_R_STUTZEN2	GEWINDE	10	-35487	626134	3047	1763	49176	-212	50940	640	0.01
M6X20_R_STUTZEN3-1-RAD-6_GEWINDE_IOS	M6X20_R_STUTZEN3	GEWINDE	14	-36149.7	663559	3439	1796	52115	-212	53912	640	0.01
M8X50_R_DECKEL1-2-RAD-3_KOPF_IOS	M8X50_R_DECKEL1	KOPF	6	-23628.8	245828	4279	645	7869	-208	8516	640	0.08

R9 - Schwingbeanspruchung (Ermüdungsnachweis)

V:1.01

Schraube	Gruppe	Position	Szenario	Zyklen	ΔF _{SA} [N]	ΔM _{SB} [Nmm]	Δσ _Z [MPa]	Δσ _B [MPa]	σ _{ab} [MPa]	σ _{AS} [MPa]	S _D [-]
M10XS0_R_DECKEL2-1-RAD-2_GEWINDE_JOS	M10X50_R_DECKEL2	GEWINDE	3 - 6	2000000	9704.8	436464.6	83.7	3503.7	3587.4	51	0.01
M6X20_R_STUTZEN1-1_KOPF_IOS	M6X20_R_STUTZEN1	KOPF	3 - 6	2000000	19600.3	931968.4	487	36597.8	37084.8	59.5	0
M6X20_R_STUTZEN2-1-RAD-6_GEWINDE_JOS	M6X20_R_STUTZEN2	GEWINDE	3 - 10	2000000	25305.1	626163.1	628.7	24589	25217.8	59.5	0
M6X20_R_STUTZEN3-1-RAD-6_GEWINDE_IOS	M6X20_R_STUTZEN3	GEWINDE	3 - 14	2000000	25967.8	663510.4	645.2	26055.6	26700.8	59.5	0
M8X50_R_DECKEL1-2-RAD-3_KOPF_IOS	M8X50_R_DECKEL1	KOPF	3 - 6	2000000	5001.2	243163.9	68.3	3891.6	3959.9	54.2	0.01

R10 | R12- Assessment

introduction strategy	2	abaqus	setup asses	sment	bolt assessment		detailed assessment		additional features	
10 - Flächenpressung										V:1.0
Schraube	G	iruppe	Pos	sition	Zeit	F _{SA} [N]	A _p [mm²]	P _B [MPa]	p _G [MPa]	S _p [-]
M10X50_R_DECKEL2-1-RAD-2_GEV	WINDE_IOS	M10X50_R	_DECKEL2	GEWINDE	6	39308	89.5	439	1300	2.96
M6X20_R_STUTZEN1-1-RAD-2_KOPF_JOS		M6X20_R_STUTZEN1		KOPF	5	31383.9	34.9	899.5	1300	1.45
M6X20_R_STUTZEN2-1_GEV	WINDE_IOS	M6X20_R_S	TUTZEN2	GEWINDE	11	37519.8	34.9	1075.4	1300	1.21
M6X20_R_STUTZEN3-1_GEWINDE_IOS		M6X20_R_S	TUTZEN3	GEWINDE	15	37126	34.9	1064.1	1300	1.22
M8X50_R_DECKEL1-2-RAD-3_GEWINDE_IOS		M8X50_R_DECKEL1				225200		423.5	1300	3.07
12 - Gleiten	WINDE_IOS	M8X50_R	_DECKEL1	GEWINDE	6	23628.8	55.8	Search:	1300	V:1.0
12 - Gleiten	WINDE_IOS	M8X50_R	_DECKEL1	GEWINDE FQ [N]		μ[-]	55.8 S Index [-]	Search:	RW [mm]	
12 - Gleiten low 50 entries				F _{Q [N]}			S Index [-]	Search:	RW [mm]	
2 - Gleiten ow 50 entries Gleitebene	_R12_DECKEL_1	Zeit	F _{Ax [N]}	FQ [N]		μ[-]	S Index [-]	Search:	RW [mm]	V:1. 0.13623
12 - Gleiten ow 50 entries Gleitebene BEHAELTER-1.DI_	_R12_DECKEL_1 _R12_DECKEL_2	Zeit 6	F _{Ax} [N] 474	FQ [N] 535 427	55892.9	μ[-] 0.12	S Index [-]	Search:	RW [mm]	V:1.
12 - Gleiten now 50 entries Gleitebene BEHAELTER-1.DI_ BEHAELTER-1.DI_	_R12_DECKEL_1 _R12_DECKEL_2 R12_STUTZEN_1	Zeit 6	F _{Ax [N]} 474	Fq [N] 535 427 326	55892.9 68616.6	μ[-] 0.12 0.12	S Index [-]	Search:	RW [mm]	V:1. 0.13623
12 - Gleiten now 50 entries Gleitebene BEHAELTER-1.DI_ BEHAELTER-1.DI_R	_R12_DECKEL_1 _R12_DECKEL_2 R12_STUTZEN_1 _R12_STUZEN_2	Zeit 6 6	F _{Ax [N]} 474 615	FQ [N] 535 427 326 483	55892.9 68616.6 13839.1	μ[-] 0.12 0.12 0.12	S Index [-]	Search:	RW [mm]	V:1. 0.13623 0.049079 1.0025

Detailed assessment: R8 - working stress

introduction

strategy

abagus

setup assessment

bolt assessment

detailed assessment

additional features

Detailed assessment **for each bolt result**. A simple click is enough.

→ Easy identifying of the possible failure mode

M10X50_R_DECKEL2-1-RAD-2_KOPF_IOS

M10X50_R_DECKEL2

KOPF

Zeit: 6

0

Festigkeitsklasse: 8.8

Betriebsbeanspruchung (VDI2230 R8/4) mit Biegung (VDI2230 149)

$$\sigma_{\rm red,B} = \sqrt{\left(\sigma_{\rm Z} + \sigma_{\rm B}\right)^2 + 3 \cdot \left(k_\tau \!\cdot\! \tau_{\rm max}\right)^2} =$$

$$\sigma_{\rm red,B} = \sqrt{\left(678 \frac{N}{mm^2} + 7078 \frac{N}{mm^2}\right)^2 + 3 \cdot \left(0.5 \cdot -205 \frac{N}{mm^2}\right)^2} =$$

$$\sigma_{
m red,B} = 7758 rac{
m N}{
m mm^2}$$

Sicherheit gegen Überschreitung der Streckgrenze: (VDI2230: R8/5-2)

$$m S_F = rac{R_{p0.2}}{\sigma_{red,B}} = rac{640rac{N}{mm^2}}{7758rac{N}{mm^2}} = 0.08$$

Zugspannung:

$$\sigma_{
m Z} igg[rac{
m N}{
m mm^2} igg]$$

Biegespannung:

$$\sigma_{
m B} igg[rac{
m N}{
m mm^2} igg]$$

Torsionsspannung:

$$\tau \left[\frac{\mathrm{N}}{\mathrm{mm}^2} \right]$$

Reduktionskoeffizient:

$$\mathrm{k}_{ au}\left[-
ight]$$

Streckgrenze (T = 23°C)

$$R_{p0.2} \left[\frac{N}{mm^2} \right]$$

Detailed assessment

introduction strategy

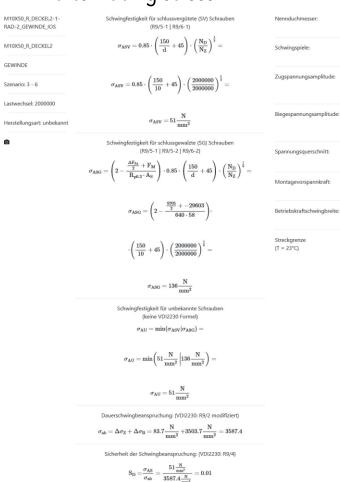
setup assessment

abagus

d[mm]

 $A_S[mm^2]$

 $F_M[N]$


 $R_{p0.2} \left[\frac{N}{mm^2} \right]$

bolt assessment

detailed assessment

additional features

R9 - alternating stress

R10 - surface pressure

$$\begin{aligned} & \text{Sicherheit gegen Flächenpressung: (VDI2230: R10/4)} \\ & S_p = \frac{p_G}{p_{b,max}} = \frac{p_G}{\frac{p_{SA,max}}{p_{SA,max}}} = \frac{1300 \frac{N}{mm^2}}{\frac{30008 \, N}{80.54 \, mm^2}} = 2.96 \end{aligned}$$

$$\label{eq:maximale} \begin{array}{ll} \text{maximale Axialkraft:} & F_{SA,max}\left[N\right] \\ \\ \text{Auflagefläche:} & A_{p,min}\left[mm^2\right] \\ \\ \text{Flächenpressung:} & P_{b,max}\left[\frac{N}{mm^2}\right] \\ \\ \\ \text{Grenzflächenpressung:} & \\ \end{array}$$

R12 - slipping, shearing

Sicherheit gegen Gleiten: (VDI2230: R12/4 modifiziert)
$$\mathbf{S_G} = \frac{\mathbf{F_{Ax}} \cdot \boldsymbol{\mu}}{\mathbf{F_O}} = \frac{474535 \, \mathbf{N \cdot 0.12}}{55892.9 \, \mathbf{N}} = 1.02$$

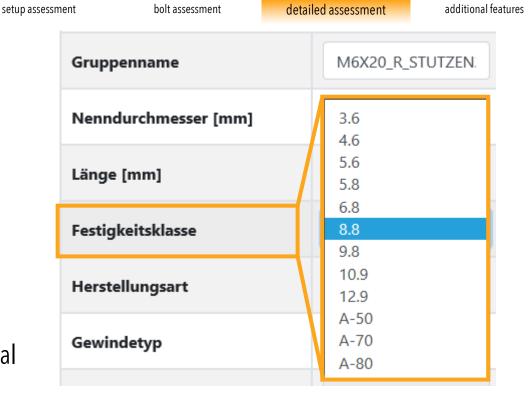
Axialkraft:
$$F_{Ax}\left[N\right]$$
 Querkraft:
$$F_{Q}\left[N\right]$$
 Reibungskoeffizient:
$$\mu\left[-\right]$$

Forecast studies

Just change the bolt properties of a group

strategy

abagus


Bolt diameter

introduction

- Strength grade
- Manufacturing
- Thread type

and click on the save button.

Caution: This is an engineering guess, a final verification is needed.

Additional features

introduction strategy abagus setup assessment bolt assessment detailed assessment additional features

Web tool

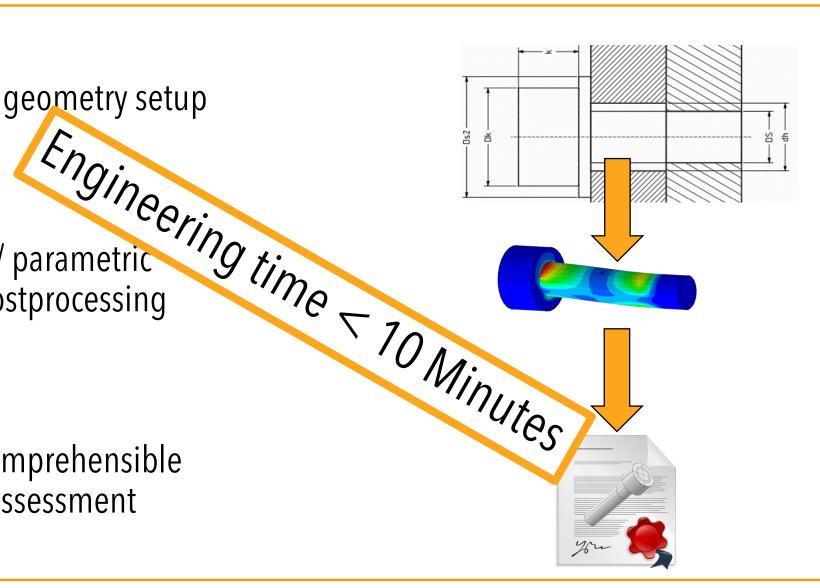
- Determination of:
 - Pretension force, including documentation
 - Compression cone
 - Preload losses due to relaxation
- Copy project setups for nearly similar FEM- Models
 - Cold and hot conditions
 - Part modifications
- Export whole data table results to:
 - Clipboard
 - CSV
 - Excel
 - PDF
 - Direct printing
- Multi CAE software support:

Web based

- No local installation required
- No local updates needed
- No CAE license needed
- Operating system independent

Abaqus

- Boolean of bolt surfaces and sets for all instances per Part
- Automatic general Contact definition
- Automatic generation of Solid property cards for each material
- Several toggle features
- High resolution picture capture to clipboard


Conclusion

Parametric geometry setup

Automatic / parametric pre- and postprocessing

Fast and comprehensible VDI 2230 assessment

Thank you for your attention

For additional information or a websession/live demo, please contact:

Rüdiger Fichtenau

r.fichtenau@di-gmbh.com

T: +49 731 850779-13

DI – Die Ingenieure GmbH

Ringstraße 1

89081 Ulm

Germany

T: +49 731 850779-0

info@di-gmbh.com

https://di-gmbh.com

